
LESSON 11 - STUDY GUIDE

Abstract. Continuing the previous lesson on convolution, we will focus now on what, arguably, is its

main application: approximate identities.

1. Approximate Identities.

Study material: We will continue on section 8.2 Convolution from chapter 8 Elements of Fourier
Analysis in [1], specifically focusing on pgs. 242–246, as well as Section 1.2 Convolution and Ap-
proximate Identities, in particular the subsection 1.2.4 Approximate Identities in [2]. Unlike the
previous lesson, for the current one I will pick the material more evenly from both sources which, I believe,
complement each other on this topic.

In the previous lesson, we saw how L1(Rn) is a commutative algebra with the product defined by the
convolution

(1.1) f ∗ g(x) =

∫
Rn
f(x− y)g(y)dy.

However, this algebra does not have an identity, for there is no function I ∈ L1(Rn) such that

f ∗ I = f.

In fact, such an I would be the Dirac δ, which is a distribution (actually, quite a “mild” distribution...
it is simply a measure). Nevertheless, even outside the framework of the theory of distributions, there is
still a very useful alternative, consisting of families or sequences of L1 functions that, intuitively, converge
to the Dirac δ and therefore approximate the identity.

Definition 1.1. An approximate identity, or approximation of the identity, is a family of functions
kε ∈ L1(Rn), ε > 0, such that

(1) The family is bounded in the L1(Rn) norm, i.e. there is C > 0 such that ‖kε‖L1(Rn) ≤ C, for all
ε > 0.

(2)

∫
Rn
kε(x)dx = 1, for all ε > 0.

(3) For any δ > 0, lim
ε→0

∫
|x|≥δ

|kε(x)|dx = 0.

As mentioned above, it is also very common to consider sequences of approximate identities, in which
case one takes {kn}n∈N as n→∞.

The simplest and most frequent form of obtaining approximate identities consists in rescaling a single
function φ ∈ L1(Rn), with

∫
φ = 1. In fact, if from one such function one defines the rescaled family

(1.2) φε(x) =
1

εn
φ
(x
ε

)
, for ε > 0,

then ∫
Rn
φε(x)dx =

∫
Rn

1

εn
φ
(x
ε

)
=

∫
Rn
φ(y)dy = 1,
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by the change of variable y = x/ε. And, analogously, ‖φε‖L1(Rn) = ‖φ‖L1(Rn), for all ε > 0 (although,
of course, this norm might not be 1 if φ is not positive). So, conditions (1) and (2) in Definition 1.1
are easily satisfied. As for condition (3), one should keep in mind that the rescaling of φ given by (1.2)
shrinks the support of φ around the origin, while spiking its values, keeping the integral constant and
equal to 1 (intuitively approximating a Dirac δ) as ε → 0. To put it rigorously, one starts by observing
that cutting off |φ| at radius r, then the corresponding integral

∫
|φ|χ{|x|<r} converges obviously to

∫
|φ|

as r →∞ by the monotone convergence theorem. Thus∫
|φ| −

∫
|φ|χ{|x|<r} =

∫
|φ|χ{|x|≥r} → 0 as r → 0.

But then, given any fixed δ > 0, we have, by a change of variables,∫
|x|≥δ

|kε(x)|dx =

∫
|x|≥δ

1

εn

∣∣∣φ(x
ε

)∣∣∣ dx =

∫
|y|≥ δε

|φ(y)|dy → 0,

by the preceding observation, because r = δ
ε → ∞ as ε → 0. So condition (3) in Definition 1.1 is also

satisfied and this establishes that φε, defined by the rescaling of φ, is indeed an approximate identity.
The importance of approximate identities stems from the following fundamental theorem.

Theorem 1.2. Suppose that kε is an approximate identity or, more generally, a family of functions that
satisfies Definition 1.1, (1) and (3), with condition (2) broadened to the case

(2′)

∫
Rn
kε(x)dx = a ∈ C, for all ε > 0.

Then we have

(1) If f ∈ Lp(Rn), with 1 ≤ p < ∞, then f ∗ kε ∈ Lp(Rn) and f ∗ kε → af in the Lp(Rn) norm, as
ε→ 0.

(2) If f is uniformly continuous and bounded on Rn, then f ∗ kε is also uniformly continuous and
bounded on Rn and f ∗ kε → af uniformly, i.e. in the L∞(Rn) norm, as ε→ 0.

(3) If f ∈ L∞(Rn) is continuous on an open set Ω ⊂ Rn, then f ∗ kε ∈ L∞(Rn), is uniformly
continuous on Rn and f ∗ kε → af uniformly on compact subsets K ⊂ Ω, as ε→ 0.

Remark 1.3. Of course the case a = 1, corresponding to approximate identities, is the most frequent
application of this theorem. But the case a = 0, for example, is also frequently useful.

Proof.

(1) As f ∈ Lp(Rn), with 1 ≤ p <∞, and kε ∈ L1(Rn) then f ∗ kε ∈ Lp(Rn) from Young’s inequality
for convolutions (Proposition 1.3 from the previous lesson).

Now,

f ∗ kε(x)− af(x) =

∫
Rn
f(x− y)kε(y)dy −

∫
Rn
kε(y)dyf(x) =

∫
Rn

(
f(x− y)− f(x)

)
kε(y)dy,

and we use Minkowski’s integral inequality to obtain

‖f ∗ kε − af‖Lp(Rn) ≤
∫
Rn
‖f(· − y)− f(·)‖Lp(Rn)|kε(y)|dy.

To show that this quantity is arbitrarily small as ε→ 0, we split this integral into two pieces: in
one of them, for small |y|, the smallness is achieved by the continuity of the translation operator
in the Lp norm, 1 ≤ p <∞, seen in the previous lesson (Theorem 1.7), while the L1 norm of kε
remains bounded from property (1) in Definition 1.1; for large |y| these roles are switched, and
while the Lp norm of the translation remains bounded, it is property (3) in Definition 1.1 that
yields the smallness in this case.
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So, for arbitrarily small ζ > 0, pick δ > 0 such that ‖f(· − y)−f( · )‖Lp(Rn) = ‖τyf − f‖Lp(Rn) <
ζ for all |y| < δ, by the continuity of the translation map at y = 0 in Lp(Rn), 1 ≤ p <∞. Then

‖f ∗ kε − af‖Lp(Rn) ≤

≤
∫
|y|<δ

‖f(· − y)− f(·)‖Lp(Rn)|kε(y)|dy +

∫
|y|≥δ

‖f(· − y)− f(·)‖Lp(Rn)|kε(y)|dy ≤

≤ ζ‖kε‖L1(Rn) + 2‖f‖Lp(Rn)

∫
|y|≥δ

|kε(y)|dy

and as explained above, the second term in this sum can be made arbitrarily small by property
(3) in Definition 1.1 while the ‖kε‖L1(Rn) ≤ C by property (1). This finishes the proof of (1).

(2) If f is bounded and uniformly continuous, then f ∈ Cb(Rn) ⊂ L∞(Rn), where we denote by
Cb(Rn) the space of bounded continuous functions with the supremum norm (that coincides with
the L∞ norm of the corresponding class of equivalence of functions in L∞). Then, from Hölder’s
inequality for convolutions, Theorem 1.8 in the previous lesson, it follows that f ∗kε is a bounded
and uniformly continuous function. Incidentally, the uniform continuity of f is the same as the
(uniform) continuity of the translation map in the L∞ norm, as it corresponds to guaranteeing
that

sup
x∈Rn

|f(x− y)− f(x)| = ‖τyf − f‖L∞(Rn) → 0, when y → 0.

(we observed this same fact in the last lesson, when proving the uniform continuity of continuous
functions of compact support, in Proposition 1.6). But then we can just repeat the proof above,
in part (1), replacing the Lp norm there by the L∞ norm. Of course, part (1) does not hold
generally for p = ∞ because the translation map is not continuous for any function in L∞, but
the condition that f is uniformly continuous ensures that it is in this particular case.

(3) That f ∗ kε is bounded (L∞) and uniformly continuous on Rn is again just a consequence of
Hölder’s inequality for convolutions, Theorem 1.8 in the previous lesson. If f is continuous on
an open set Ω then, from the Heine-Cantor theorem in advanced calculus we know that f is
uniformly continuous on compact subsets K ⊂ Ω, i.e. for any ζ > 0 there is δ > 0 such that
supx∈K |f(x− y)− f(x)| = ‖τyf − f‖L∞(K) < ζ for |y| < δ (notice that x is in K but x− y need
not be). The result is proved again by an argument entirely similar to the proofs of parts (1)
combined with (2), but just restricting to x ∈ K and using the continuity of the translation map
with respect to the L∞ norm on K ⊂ Ω.

�

Recall that convergence in the Lp norm does not imply pointwise convergence, not even almost every-
where. As we have already seen, convergence in the Lp norm only ensures the existence of subsequences
that converge a.e. So the previous theorem, except for the L∞ cases (2) and (3), where some continuity
of f is also demanded in the hypotheses, is still quite far from a result for pointwise convergence of ap-
proximate identities. Later in this course we will study an extremely powerful tool of harmonic analysis
that is usually the predominant technique for proving pointwise convergence for sequences of functions
in Lp: the Hardy-Littlewood maximal operator.

Combining approximate identities with the smoothness of convolutions (Proposition 1.4 from the
previous lesson) we can improve the result on the density of Cc in Lp to show that, in Rn, one actually
has density of C∞c in Lp for any open set.

Theorem 1.4. Let Ω ⊂ Rn be an open set. Then, C∞c (Ω) is dense in Lp(Ω) for all 1 ≤ p <∞.
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Proof. Let K1 ⊂ K2 ⊂ K3 . . . ⊂ Ω be an increasing sequence of compact subsets of Ω such that ∪∞j=1Kj =
Ω. Then, for any f ∈ Lp(Ω), 1 ≤ p <∞, the sequence of cut-offs fχKj converges to f in the Lp(Ω) norm,
where χKj denote the characteristic functions of the compacts Kj . In fact, we have∫

Ω

|f(x)− f(x)χKj (x)|pdx =

∫
Ω

|f(x)|p(1− χKj (x))dx→ 0,

by the dominated convergence theorem. So, for any f ∈ Lp(Ω) and arbitrarily small δ > 0 we can pick a
compact K ⊂ Ω for which ‖f − fχK‖Lp(Ω) < δ/2.

Now that we have extracted an Lp(Ω) function fχK , of compact support in Ω, δ/2-close to the original
f (but still as rough as the original f) we will use the regularity of convolutions together with approximate
identities to build a C∞c (Ω) function δ/2-close to fχK , therefore δ-close to f , thus establishing the density
result. So, we start by choosing φ ∈ C∞c (Rn), such that suppφ is contained in the unit ball around the
origin B1(0) and

∫
φ = 1 (this requires a bit of familiarity with C∞c functions which I am assuming, so

please review these concepts in Section 8.1 of [1] in case you lack that familiarity). It is a simple exercise
of topology of subsets of Rn to show that the distance from a compact set K to a closed disjoint set is
positive. So dist(K,Ωc) = inf{|x − y| : x ∈ K, y ∈ Ωc} > 0 and if we consider ε much smaller than this
positive distance, we surely have, from property (5) of Theorem 1.1 in the last lecture,

supp (fχK ∗ φε) ⊂ K +Bε(0) ⊂ Ω,

where φε is the rescaled version of φ as in (1.2).

Ω
dist(K,Ωc) > 0

K +Bε(0)

Bε(x)

K

In other words, the support of fχK ∗ φε is contained in the closure of the ε-neighborhood of K. On the
other hand, because K is compact, thus of finite measure, we have fχK ∈ L1(Ω) from the inclusion of
Lp spaces on finite measure domains. And from the regularity result for convolutions, Proposition 1.4 in
the last lecture, we can finally conclude that fχK ∗ φε ∈ C∞c (Ω).

To conclude the argument, we know from the approximation of the identity property of φε, that
fχK ∗φε → fχK in the Lp(Ω) norm, as ε→ 0. So we can pick a particular fχK ∗φε ∈ C∞c (Ω) such that
‖fχK − fχK ∗ φε‖Lp(Ω) < δ/2 which then satisfies

‖f − fχK ∗ φε‖Lp(Ω) ≤ ‖f − fχK‖Lp(Ω) + ‖fχK − fχK ∗ φε‖Lp(Ω) < δ,

as desired. �

We will finish this section with another very useful and related result: the existence of smooth cut-off
functions for compact sets. The existence of such cut-off, or bump, functions is an essential ingredient,
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for example, in the construction of smooth partitions of unity (their existence can also be proved without
convolutions, but here it becomes a simple application of the results developed so far).

Theorem 1.5. (C∞ Urysohn Lemma - Existence of smooth cut-off functions) Let K ⊂ Ω be a
compact subset of the open set Ω. Then, there exists f ∈ C∞c , with 0 ≤ f ≤ 1 such that f(x) = 1 for all
x ∈ K and supp f ⊂ Ω.

Proof. As before, dist(K,Ωc) = inf{|x − y| : x ∈ K, y ∈ Ωc} > 0. Let us denote this distance by D.
Considering δ = D/3, say, and the δ-neighborhood of the compact set K

Kδ = {x ∈ Ω : |x− y| ≤ δ for some y ∈ K},
we take the characteristic function χKδ .

Choose now a non-negative φ ∈ C∞c with
∫
φ = 1 and suppφ ⊂ B1(0) as in the previous proof. Again

consider the rescaled φε and make ε = D/10, for example. Then, from the property about the supports
of convolutions, we have that

suppχKδ ∗ φε ⊂ Kδ +Bε(0) ⊂ Kδ+ε ⊂ Ω,

and it easy to check that, for x ∈ K

χKδ ∗ φε(x) =

∫
Kδ

φε(x− y)dy = 1.

So f = χKδ ∗ φε satisfies the required properties and this finishes the proof. �
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